
Improving Web Application Testing with User Session Data

Sebastian Elbaumy, Srikanth Karrey, Gregg Rothermelz,

yDepartment of Computer Science and
Engineering

University of Nebraska - Lincoln
Lincoln, Nebraska

felbaum,skarreg@cse.unl.edu

zDepartment of Computer Science
Oregon State University

Corvallis, Oregon
grother@cs.orst.edu

Abstract

Web applications have become critical components of
the global information infrastructure, and it is important
that they be validated to ensure their reliability. Therefore,
many techniques and tools for validating web applications
have been created. Only a few of these techniques, however,
have addressed problems of testing the functionality of web
applications, and those that do have not fully considered
the unique attributes of web applications. In this paper we
explore the notion that user session data gathered as users
operate web applications can be successfully employed in
the testing of those applications, particularly as those appli-
cations evolve and experience different usage profiles. We
report results of an experiment comparing new and existing
test generation techniques for web applications, assessing
both the adequacy of the generated tests and their ability
to detect faults on a point-of-sale web application. Our re-
sults show that user session data can produce test suites
as effective overall as those produced by existing white-box
techniques, but at less expense. Moreover, the classes of
faults detected differ somewhat across approaches, suggest-
ing that the techniques may be complimentary.

1. Introduction

Web applications are among the fastest growing classes
of software systems in use today. These applications are
being used to support a wide range of important activities:
business functions such as product sale and distribution,
scientific activities such as information sharing and pro-
posal review, and medical activities such as expert-system
based diagnoses. Given the importance of such applica-
tions, faulty web applications can have far-ranging conse-
quences on businesses, economies, scientific progress, and
health. It is important that web applications be reliable, and
to help with this, they should be validated.

To address this problem, many types of web application
validation techniques have been proposed and many tools
have been created. Most of these techniques and tools,
however, focus on aspects of validation such as protocol
conformance, load testing, broken link detection, and var-
ious static analyses, and do not directly address validation
of functional requirements. Those tools that do focus on
functional requirements primarily provide infrastructure to
support capture-replay: recording tester input sequences for
use in testing and regression testing.

Recently, a few more formal approaches for testing the
functional requirements of web applications have been pro-
posed [11, 17]. In essence, these are “white-box” ap-
proaches, building system models from inspection of code,
identifying test requirements from those models, and requir-
ing extensive human participation in the generation of test
cases to fulfill those requirements. The approaches have
shown promise in early empirical studies in terms of support
for constructing “adequate” (by some criterion) test suites.
However, the approaches also have drawbacks, in part due
to differences between web applications and systems devel-
oped and operated under more traditional paradigms.

Among these differences, we consider three in particular.
First, the usage of web applications can change rapidly. For
example, a web site with a popular name that is caught by
a search engine can suddenly find itself receiving hundreds
of thousands of hits per day rather than just dozens [12]. In
such cases, test suites designed with particular user profiles
in mind may turn out to be inappropriate.

Second, web applications typically undergo maintenance
at a faster rate than other software systems; this mainte-
nance often consists of small incremental changes [9]. To
accommodate such changes, testing approaches must be au-
tomatable and test suites must be adaptable.

Finally, web applications typically involve complex,
multi-tiered, heterogeneous architectures including web
servers, application servers, database servers, and clients

acting as interpreters. Testing approaches must be able to
handle the various components in this architecture.

Although some recently proposed techniques for testing
the functional requirements of web applications [11, 17]
partially address this third difference, the first two differ-
ences have not yet been addressed. Thus, in this paper, we
propose a testing approach that utilizes data captured in user
sessions to create test cases. We describe two stand-alone
implementations of this approach, and a hybrid implemen-
tation that combines the approach with techniques such as
the existing white-box approaches just described. We re-
port results of an empirical study comparing these imple-
mentations of our approach with two different implemen-
tations of an existing approach recently proposed by Ricca
and Tonella [17]. Unlike previous studies of web applica-
tion testing techniques, however, our study assesses the fault
detection effectiveness of the approaches.

In the next section we briefly describe the characteristics
of the class of web applications that we are considering, and
then we review related work on testing these applications.
Section 3 describes Ricca and Tonella’s technique in greater
detail, and then describes our new approach and its imple-
mentations. Section 4 presents the design and results of our
empirical study of these techniques, and Section 5 summa-
rizes and comments on future work.

2. Background and Related Work

2.1. Web applications

A web site can be differentiated from a web application
based on the “ability of a user to affect the state of the busi-
ness logic on the server” [4]. In other words, requests made
of a web application go beyond navigational requests, in-
cluding some form of data that needs further decomposition
and analysis to be served.

Figure 1 shows how a simple web application operates.
A user (client) sends a request through a web browser. The
web server responds by delivering content to the client. This
content generally takes the form of some markup language
(e.g., HTML) that is later interpreted by the browser to ren-
der a web page at the user site. For example, if a request
consists of just a URL (Uniform Resource Locator – a web
site address), the server may just fetch a static web page.

Other requests are more complicated and require further
infrastructure. For example, in an e-commerce site, a re-
quest might include not just a URL, but also data provided
by the user. Users provide data primarily through forms
consisting of input fields (textboxes, checkboxes, selection
lists) rendered in a web page. This information is translated
into a set of name-value pairs (input fields’ names and their
values) and becomes part of the request.

Although the web server receives this request, further el-
ements are needed to process it. First, a group of scripts and

Client
Browser

Web
Server

Scripts and
Application

Server

Database
Server

[Finish generating dynamic p

Request
Request for

page generation

Response
(dynamic page)

Dynamically
generated page

Result Set

SQL Command
Response

(static page)

Figure 1. Sequence diagram of a web application.

perhaps an application server may parse the request, query a
database server to retrieve information about the item, and
then employ further formatting scripts to generate HTML
code on the fly to address the user request. This newly gen-
erated page, generated at run time and depending on user’s
input, is called a dynamic web page.

In this context, the application server, database, and
scripts collaborate to assemble a response that fits the re-
quest. Although in practice requests can be more complex,
this example illustrates that there are multiple and varied
technical components behind the web server. It is also im-
portant to note that scripts such as those just referred to are
changed frequently [13], and the technologies supporting
them change often, as evident in the frequent appearance of
new standards for web protocols (e.g., XML, XSL, SOAP
and CCS [10]).

2.2. Related work

The testing of web applications has been led by indus-
try, whose techniques have been oriented primarily toward
validation of non-functional requirements. This is evident
in the number and variety of existing tools available for the
relatively new web application domain. These tools range
from markup text language validators and link checkers to
various load testing and performance measurement tools.1

The variety and quantity of tools for testing functional
requirements of web applications, on the other hand, is
much more limited. The most common class of functional
testing tools provide infrastructure to support the capture
and replay of particular user scenarios [16, 18]. Testers exe-
cute possible user scenarios, and the tools record events and
translate them into a series of scripts that can be replayed
later for functional and regression testing. Other classes

1A comprehensive list of these tools is available at
http://www.softwareqatest.com/qatweb1.html.

of functional testing tools generate test cases by combin-
ing some type of web site path exploration algorithm with
tester provided inputs [13, 15]. A prototype framework in-
tegrating these various features is presented in [19].

Recently, two more formal techniques have been pro-
posed to facilitate testing of functional requirements in web
applications. Both techniques employ forms of model-
based testing, but can be classified as “white-box” tech-
niques, since they rely on information gathered from the
web application code to generate the models on which they
base their testing. Liu et al. [11] propose WebTestModel,
which considers each web application component as an ob-
ject and generates test cases based on data flow between
those objects. Ricca and Tonella [17] propose a model
based on the Unified Modeling Language (UML), to enable
web application evolution analysis and test case generation.
Both these techniques, in essence, extend traditional path-
based test generation and data flow adequacy assessment to
the web application domain; the second also builds on the
existence of popular UML modelling capabilities.

It is worth noting that the effectiveness of these tech-
niques has been evaluated only in terms of ability to achieve
coverage adequacy. We find no reports to date of studies as-
sessing fault detection capabilities of the techniques.

3. Web-Application Testing Techniques

In this section we provide further details about the par-
ticular techniques that we have investigated, including ex-
isting approaches and user-session based approaches. We
first describe our implementations of Ricca and Tonella’s
approach. This approach is representative of the white-box
techniques described in Section 2; it has also shown suc-
cess in terms of coverage adequacy, and has been presented
in detail sufficient to allow its implementation, given a few
assumptions. Next, we introduce two new techniques for
use in testing functional requirements of web applications.
Our techniques are based on data captured in user sessions,
and they exploit the availability of user inputs for automatic
test case generation. Last, we present one possible inte-
gration of these two approaches. Table 1 summarizes the
techniques.

3.1. Ricca and Tonella’s approach

Conceptually, Ricca and Tonella’s [17] approach creates
a model in which nodes represent web objects (web pages,
forms, frames), and edges represent relationships and inter-
actions among the objects (include, submit, split, link).

For example, Figure 2 shows a model of a component
of an application for on-line book purchasing, following the
graphical representation used in [17]. The diagram starts
at the BookDetail node. This node is dynamically gener-
ated in response to a request to browse a particular book.

Label Description Type

WB-1 Simplest Ricca and Tonella White box
implementation [17]

WB-2 WB-1 with boundary values White box
US-1 Replay captured user sessionsUser-session
US-2 Combine interactions from User-session

different user sessions
HYB Insert user session values Hybrid

into WB-1

Table 1. Web application testing techniques.

When rendered by the browser, this page contains informa-
tion about the book and also includes (through edges e1 and
e4) two forms: one to add the book to the shopping cart and
one to rate the book. Both forms collect user input. If the
rating form is submitted (e5), a new BookDetail page is gen-
erated with the updated rating for the book. If a valid book
quantity is submitted (e2), the shopping cart is updated and
a corresponding dynamically generated page is sent to the
browser. Otherwise, BookDetail is sent again (e3).

(valid quantity)

submit

submit

include

ShoppingCart

input: quantity

(invalid quantity)

e2

e4

e5

submitinclude

e3

e1

input:rating

FormForm

BookDetail

Dynamic Page

Dynamic Page

Figure 2. UML model of an e-commerce application.

To generate test requirements and cases, a path expres-
sion to match the graph is generated following a procedure
similar to the one introduced by Beizer [2]. The path ex-
pression corresponding to the example from Figure 2 is
(e1e3) � +(e4e5)�, where� indicates zero or more occur-
rences of the immediately preceding edge(s) and+ indi-
cates an alternative.

The path expression is used to generate quasi test cases
in combination with heuristics to minimize the number of
test cases required to satisfy a given criterion. For exam-

ple, from the path expression for Figure 2, we can derive
the sample quasi test cases:e1e3, e1e2, ande4e5. A (hu-
man) tester then provides input values so that the tests can
be executed. In this approach, then, a test case consists of
a sequence of web pages to be visited, together with their
corresponding name-value pairs.

We consider two implementations of this approach. Our
first implementation, WB-1, attempts to match the method-
ology presented in [17]. Test cases are generated from the
path expression following the suggested procedure, but we
were forced to make some assumptions about the imple-
mentation where details were not available. Specifically:
(1) we tested only independent paths; (2) for search fields
that could generate many different pages, we tested using
only one input value; and (3) we ignored circular links and
textual differences in dynamically generated pages. Once
the quasi test cases were generated from the path expres-
sion, we filled the forms so that they could be executed.

Our second implementation, WB-2, relaxes some of the
assumptions established for WB-1 and incorporates a more
elaborate approach for input value selection. In contrast
to WB-1, WB-2 uses boundary values as inputs, and uti-
lizes an “each condition/all conditions” strategy to combine
them [3]. The test suite consists of test cases in which each
variable is set to true once with all the other variables set
to false, plus one test case in which all variables are true.
The objective of using boundary values and the “each con-
dition/all conditions” strategy was to add formalism to the
process of inputting data into the forms, as recommended in
one of the examples in [17]. In addition, this technique con-
siders not only differences in links, forms, and frames, but
also textual differences when evaluating dynamically gen-
erated pages.

3.2. User-session based techniques

One limiting factor in the use of white box web appli-
cation testing techniques such as Ricca and Tonella’s is the
cost of finding inputs that exercise the system as desired.
Selection of such inputs is slow and must be accomplished
manually [17]. User-session based techniques can help with
this problem by transparently collecting user interactions
and transforming them into test cases. The techniques cap-
ture and store the clients’ requests in the form of URLs and
name-value pairs, and then apply strategies to these to gen-
erate test cases.

Because normal web application operation consists of re-
ceiving and processing requests, and because a web appli-
cation runs in just one environment which the organization
performing the testing controls, the collection of client re-
quest information can be accomplished easily. For example,
with minimal configuration changes, the Apache web server
can log all received requests [1]. Another slightly more
powerful but less transparent alternative that can capture all

name-value pairs consists of adding snippets of javascript to
the delivered webpages so that all requests invoke a server-
side logging script.

As a consequence, user-session based techniques do not
require additional infrastructure to collect this data, limiting
the impact on web application performance. This is equiv-
alent to having a built-in instrumentation mechanism, an
approach well suited to web applications. Another advan-
tage of collecting just the requests is that at that higher ab-
straction level, some of the complexities introduced by het-
erogeneous web application architectures are hidden. This
lessens the dependencies of user-session based techniques
on changes in web application components.

Given the collected URL and name-value pairs, there are
many ways in which test cases could be generated. The
simplest approach is to sequentially replay individual user
sessions. A second approach is to replay a mixture of inter-
actions from several users. A third approach is to replay ses-
sions in parallel so that requests are handled concurrently. A
fourth approach is to mix regular user requests with requests
that are likely to be problematic (e.g., navigating backward
and forward while submitting a form).

A complicating factor for these approaches involvesweb
application state. When a specific user request is made
of a web application, the outcome of that request may de-
pend on factors not completely captured in URL and name-
value pairs alone; for example, an airline reservation re-
quest may function differently depending on the pool of
available seats. Further, the ability to execute subsequent
tests may depend on the system state achieved by preceding
tests. The simplest approach of replaying user sessions in
their entirety is not affected by application state, provided
that initial system state is known and can be instantiated.
The use of more complex approaches such as intermixed or
parallel replay, however, might often be affected by state.

In such cases, one approach for using user-session data
is to periodically take snapshots of the state values (or of
a subset of those values) that potentially affect web appli-
cation response. Associating such snapshots with specific
requests, or sequences of requests, increases the likelihood
of being able to reproduce portions of user sessions, at the
cost of resources and infrastructure.

A second alternative is to ignore state when generating
test cases. The resulting test cases may not precisely re-
produce the user activity on which they are based, but they
may still usefully distribute testing effort relative to one as-
pect of the users’ operational profile (the aspect captured by
the operation) in a manner not achieved by white-box test-
ing. From this perspective, the process of using user session
data to generate test cases is related to the notion of parti-
tioning the input domain of an application under test in the
hopes of being able to effectively sample from the resulting
partitions [21]. In this context, the potential usefulness of

user-session based testing techniques, like the potential use-
fulness of white-box testing techniques, need not rest solely
on being able to exactly reproduce a particular user session.
Rather, that usefulness may reside in using user session data
to provide effective partitioning heuristics, together with in-
put data that can be transformed into test cases related to the
resulting partitions.

The approaches that we have described for generating
test data from user sessions and for addressing the prob-
lem of application state each have potential costs and ben-
efits that must be explored. In this paper, we focus on two
specific user-session based techniques — a technique that
applies entire sessions, and a technique that replays a mix-
ture of sessions — each without incorporating information
on state. These techniques are relatively simple, and if they
prove effective this would motivate further research on more
complex techniques, and further exploration of the tradeoffs
among techniques.

Our first technique, US-1, transforms each individual
user session into a test case. Givenm user sessions,
U1; U2; : : : Um, with user sessionUi consisting ofn re-
questsr1; r2; : : : rn, where eachri consists ofurl[name�

value]�, the test case corresponding toUi is generated by
formatting each of the requests, fromr1 to rn, into anhttp
request that can be sent to a web server. The resulting test
suite containsm test cases, one for each user session. (For
simplicity, we define a user session as beginning when a re-
quest from a new IP address reaches the server and ending
when the user leaves the web site or the session times out.)

Our second user-session based technique, US-2, gener-
ates new user sessions based on the pool of collected data,
creating test cases that contain requests belonging to differ-
ent users. US-2 is meant to expose error conditions caused
by the use of sometimes conflicting data provided by differ-
ent users. US-2 generates a test case as follows:

� randomly select unused sessionUa from session pool;
� copy requestsr1 throughri, wherei is a random num-

ber greater than 1 but smaller thann, into the test case;
� randomly select sessionUb, whereb 6= a, and search

for anyrj with the same URL asri, and if an equiva-
lent request is not found, select another sessionUb;

� add all the requests fromUa afterrj to the test case;
� markUa “used”, and repeat the process until no more

unused sessions are available in the pool.

In a sense, US-1 is analogous to a constrained version
of a capture-replay tool (e.g, Rational Robot [16]) in which
we capture just the URL and name-value pairs that occur
throughout a session. In contrast to approaches that capture
user events at the client site, however, which can become
complicated as the number of users grow, our approach cap-
tures just the URL and name-value pairs that are the result
of a sequence of the user’s events, captured at the server site.

This alleviates some of the privacy problems introduced by
the more intensive instrumentation used by some capture-
replay tools.

Both US-1 and US-2 also have several other potential
advantages. First, by utilizing user requests as the base for
generating test cases, the techniques are less dependent on
the complex and fast changing technology underlying web
applications, which is one of the major limitations of white
box approaches designed to work with a subset of the avail-
able protocols. Second, the level of effort involved in cap-
turing URL and name-value pairs is relatively small as these
are already processed by web applications. This is not the
case with white box approaches such as Ricca and Tonella’s,
which require a high degree of tester participation. Third,
with these approaches, each user is a potential tester: this
implies potential for an economy of scale in which addi-
tional users provide more inputs for use in test generation.
The potential power of the techniques resides in the num-
ber and representativeness of the URL and name-value pairs
collected, and the possibility of their use in generating a
more powerful test suite (an advantage that must be bal-
anced, however, against the cost of gathering the associated
user-session data). Finally, both approaches, unlike tradi-
tional capture and replay approaches, automatically capture
authentic user interactions for use in deriving test cases, as
opposed to interactions created by testers.

We are not proposing, however, to rely solely on users to
assess web application quality. Our approach is meant to be
applied either in the beta testing phase to generate a baseline
test suite based on interactions with friendly customers, or
during subsequent maintenance to enhance a test suite that
was originally generated by a more traditional method. Fur-
ther, the approach can help testers monitor and improve test
suite quality as the web application evolves, and as its usage
proceeds beyond the bounds anticipated in earlier releases
and earlier testing.

3.3. Integrating user-sessionand white box methods

The strengths of structured white-box web application
testing techniques such as Ricca and Tonella’s might be
more successfully leveraged if they can make use of inputs
collected during user sessions. This suggests a hybrid test-
ing technique combining techniques presented in the pre-
ceding sections with white-box techniques. Such a tech-
nique could decrease the cost of input selection, but it re-
mains to be seen whether a user session’s value pairs will
be effective at detecting faults.

We wished to investigate this question and thus we also
implemented a hybrid technique. Conceptually, the inte-
gration process matches equivalent user-session sequences
with the paths defined by Ricca and Tonella’s quasi test
cases (quasi because they do not provide values, just tar-
get URL paths). Given a quasi test caseqt generated by an

WB implementation,qt is translated into a URL sequence
urlSeqqt. Then, the technique iterates through all col-
lected user sessions to identify those that contain the entire
urlSeqqt. Once the relevant user sessions have been iden-
tified, the name-value pairs corresponding to the matching
requests in each session are used to complete theurlSeqqt,
transformingqt into an executable test case. The process
continues until all possible test cases have been generated
by combining each WB quasi test case with all user ses-
sions with an equivalent sequence.

4. Empirical Study

4.1. Research questions

RQ1. The first question we address is, how effective are
the WB techniques at exposing faults in a web application?
Evaluating the effectiveness of the WB techniques will help
us assess them, and also provide a baseline against which to
compare user-session based techniques.

RQ2. Our second research question concerns the cost-
effectiveness of user-session based techniques. We conjec-
ture that test suites generated through these techniques pro-
vide a useful combination of effectiveness and efficiency.

RQ3. Last, we want to know what relationship exists be-
tween the number of user sessions and the effectiveness of
the test suites generated based on those sessions’ interac-
tions. Answering this question will help us explore the cost-
effectiveness of user-session based test suite generation.

4.2. Variables and metrics

The testing techniques listed in Table 1 constitute our in-
dependent variables, and are represented by the labels WB-
1, WB-2, US-1, US-2, and HYB.

The dependent variables we wish to capture are cover-
age and fault detection effectiveness. We use two coverage
metrics: percentage of functions covered and percentage of
blocks covered in the perl code that generated the dynamic
web pages and accessed the databases. Percentage of faults
detected constitutes our other measure of effectiveness.

4.3. Experimental setting

4.3.1 E-commerce site

The free and open source on-line bookstore available at go-
tocode.com constituted the skeleton of our e-commerce ap-
plication. The e-bookstore functionalities are divided into
two groups: customer activities and administration activ-
ities. This study concentrates on functionalities that are

accessible to the customer, not the administration compo-
nent. Figure 3 provides a screenshot of the application.
Customers can search, browse, register, operate a shopping
cart, and purchase books on-line through this site, which
operates like other similar popular sites on the web.

Customer functionality is implemented through Perl
scripts and modules to handle data and the dynamic genera-
tion of HTML pages, Mysql to manage database accesses, a
database structure composed of seven tables tracking books,
transactions, and other data objects, and Javascript and
cookies to provide identification and personalization func-
tionality. An Apache Web Server hosted the application.

We populated the database with information from 100
books (e.g., title, authors, short description, category, price,
rating). We adapted the look of the site so that the registra-
tion procedure was expedited and logins minimized, which
made the navigation process more similar to commercial
sites. Last, to capture the information required by the user-
session techniques, we modified the scripts generating dy-
namic web pages. As a result, the generated web pages in-
cluded additional Javascript code to capture user events and
to invoke a logging server-side script.

4.3.2 Fault seeding

We wished to evaluate the performance of web testing tech-
niques with respect to the detection of faults. Such faults
were not available with our subject application; thus, to
obtain them, we followed a procedure similar to one de-
fined and employed in previous studies of testing techniques
[6, 8, 22]. We recruited two graduate students of computer
science, each with at least two years of programming expe-
rience, and instructed them to insert faults that were as re-
alistic as possible based on their experience. To direct their
efforts we gave them a random generator that indicated the
approximate location of where a fault was to be seeded, and
gave them the following list of fault types to consider:2

� Scripting faults. This includes faults associated with
variables, such as definitions, deletions, or changes in
values, and faults associated with control flow, such as
addition of new blocks, redefinitions of execution con-
ditions, removal of blocks, changes in execution order,
and addition or removal of function calls.

� Web page faults. This includes addition, deletion, or
modification of name-value pairs. Such changes occur
in one or more names or values.

� Database query faults. This type of fault consists of the
modification of a query expression, which could affect
the type of operation, the table to access, fields within
the table, or the values of search keys or record values.

2These directives are adapted from the fault classification in [14].

Figure 3. Screenshot of e-commerce site used in our experiment.

The graduate students assigned to the task seeded a to-
tal of 50 faults. Nine faults were discarded: two were in
unused sections of code and the rest had no impact on the
application (e.g., the value of a variable was changed after
its last usage).

4.3.3 Assignment for participants in study

Once the web application was set up, the challenge was to
have users access the site and behave like “typical” users
of this type of e-commerce site. Users navigate sites like
ours to browse and perhaps purchase books if the material
and price are appropriate for their needs and budget. We
wished to provide the context and incentive for users to in-
teract with our application under similar circumstances.

To achieve these goals, we instructed our study partici-
pants to follow a three step process. First, they completed
an on-line form with simple demographic data. This step
was required only for the first session of each user. Sec-
ond, the description of four computer science courses was
made available to the participants; the participants needed
to select two of those courses. The final step required the
participants to access the e-bookstore site to select the most
appropriate book(s) for the courses they selected.

To select the most appropriate books, participants had
to search and browse until they found those that they con-
sidered most appropriate. We provided no definition of ap-

propriateness, so it meant different things to different users,
which is supposed to lead to a variety of activities. How-
ever, we did provide an incentive so that users took the task
completion seriously. The instructions indicated that on
completion of the experiment, the five users who selected
the most appropriate books for the courses would each re-
ceive a ten dollar gift certificate. Further directions spec-
ified that, if more than five users selected the most appro-
priate books, the amount spent would be evaluated, and ties
would be broken by considering the time spent on the web
site. Again, the objective was to recreate the conditions ob-
served for similar web applications.

4.4. Execution and processing

The US-1, US-2, and HYB techniques required user
participation to generate test suites. A list of candidate
participants was assembled, containing primarily students
from the Department of Computer Science and Engineer-
ing at UNL. An email stating participation requirements
and incentives was sent to the students on the list. The e-
commerce site was then made available to the users for two
weeks. Data collected from the user sessions was logged
to support subsequent test case generation, which occurred
off-line. There were 99 user sessions logged. Fourteen per-
cent of the sessions could not be used because, despite in-
structions, some users accessed the web site using browsers

Metric WB-1 WB-2 US-1 US-2 HYB
abs % abs % abs % abs % abs %

Test Suite Size 28 – 64 – 85 – 84 – 1089 –
Block Coverage 263 66 306 76 263 66 255 64 260 65
Function Coverage 65 97 66 99 65 97 64 96 65 97
Faults Detected 22 51 25 58 23 53 23 53 23 53

Table 2. Summary data on technique effectiveness.

other than those required. In total, 73 distinct users con-
tributed to the 85 useful sessions. The users had an average
age of 24 and 94 percent had on-line buying experience.

After the test suites corresponding to each technique
were generated, we ran them on the fault-free web appli-
cation, which served as an oracle. Then, to measure func-
tion and block coverage, the application was instrumented
so that a counter would be incremented each time one of
those entities was executed. The e-bookstore had a total of
67 functions and 400 blocks. Measuring coverage required
a second execution of each test suite.

Last, we evaluated the test suites generated through each
technique by activating the seeded faults individually, and
determining which faults were revealed by which test cases.
Since we had a total of 43 faults, this last step required an
equal number of runs of each test suite.

4.5. Results

4.5.1 On technique effectiveness

The results of executing the test suites generated by each of
the techniques are presented in Table 2. These results cor-
respond to RQ1 and RQ2, as defined in Section 4.1, and
are presented in absolute values and percentages. Over-
all, WB techniques used the fewest test cases, while the
HYB approach employed the greatest number (1089). WB-
2 provided the greatest fault detection power with 58% of
the faults detected, and the greatest coverage with 76% and
99% of the blocks and functions covered, respectively. Both
user-session based techniques performed similarly, not as
effectively as WB-2, but slightly better than WB-1. US-2
did not discover more faults than US-1 and the HYB ap-
proach did not provide additional fault detection or cover-
age. This summary, however, fails to reveal some interest-
ing facts about the differences between techniques.

First, although the overall results for fault detection are
similar, differences between the approaches are more evi-
dent when individual faults are analyzed. A detailed com-
parison of the most powerful white box and user session
based techniques is presented in Table 3. The first row of
the table lists the blocks covered, functions covered, and
faults detected by WB-2 and US-1. The second and third
rows present the same information but focusing on blocks,

Technique Blocks Functions Faults
Combination abs % abs % abs %
(WB2 \ US1) 255 64 65 97 20 47
(WB2� US1) 51 13 1 1 5 12
(US1�WB2) 8 2 0 0 3 7
(WB2 [US1) 314 79 66 99 28 65

Table 3. Detailed comparison of WB-2 and US-1.

functions, or faults uniquely associated with one technique
and not the other. The fourth row shows the result of exe-
cuting the tests generated by both techniques.

It is evident from the table that the blocks covered by
WB-2 and US-1 are not the same: 8 blocks were covered
only by US-1, while 51 others were covered only by WB-2.
A similar observation can be made about functions covered.
Also, 3 of the faults found by US-1 were not found by WB-
2, and 5 faults were found only by WB-2. Similar differ-
ences occurred with the other techniques. This supports the
hypothesis that the distinct approaches we considered are
able to find different types of faults. Further, in spite of the
unimpressive performance of HYB as we implemented it,
the last row row of Table 3 shows that when the test cases
of both techniques (representing both approaches) are com-
bined, the resulting coverage and fault detection capabilities
are better than for any individual technique.

Second, there are some type of faults that user-session
based approaches could rarely capture. Those faults have
to do with particular name-value pairs that could not be
generated using the forms available through the delivered
web pages. For example, when doing a book evaluation in
the application, five levels (from 1 to 5 stars) are available
through the web site. The only way to construct a request
with evaluation values outside that range is to generate the
request outside the rendered page. This scenario is rarely
originated by regular users, but it could have appeared if the
site were detected by search robots that perform that type of
request. Again, additional exposure time could have helped
accomplish this, but it is more likely that this type of request
would be generated by design instead of by user activity. In
addition, although we could not identify a certain type of
faults that WB techniques are likely to miss, we observed

that strategies such as that followed by WB-2 helped lessen
the impact of tester input choices on the effectiveness of
WB techniques.

4.5.2 On user-sessions versus effectiveness

A detailed analysis of our data revealed that certain tech-
niques could have performed better given some adjust-
ments. WB-2 could have discovered one more fault if the
“each condition/all condition” strategy was replaced by a
more powerful strategy such as “all variants” [3]. Still,
such an approach would require significant additional hu-
man participation, and lead to scalability problems.

US-1, on the other hand, could have detected five ad-
ditional faults, increasing its fault detection effectiveness
to 68% (better than the other techniques) if additional ex-
posure was provided through more user sessions. Two of
these additional faults were not discovered by WB-2, and
required a special combination of input values to be ex-
posed. For example, one fault could have been exposed
if a user had attempted to access the shopping cart prior
to completing the registration procedure. The three other
faults that could have been discovered by US-1, and that
were captured by WB-2, required erroneous inputs that did
not appear in the collected user sessions. For example, the
registration procedure required a password and a confirma-
tion for that password. A fault was exposed when these
inputs did not match. WB-2 caught that fault but US-1 did
not since no user session exhibited that behavior.

In this study, the effectiveness of user-session based
techniques improved as the number of collected sessions in-
creased. Figure 4 shows the relationship between the num-
ber of user sessions collected for and employed by US-1,
and its effectiveness under the various metrics considered.
The x-axis presents the individual sessions from 1 to 85
(corresponding one to one with the test cases generated by
US-1), the bars represent the US-1 test case value for the
corresponding y-variable, and the line represents the cumu-
lative count of unique faults exposed or blocks and func-
tions covered, as additional sessions exercised the applica-
tion.

The figure shows that test cases generated from user
sessions varied in terms of coverage and fault exposure,
and that the cumulative increases in the dependent vari-
ables were slower over time. Within the ranges observed,
a positive trend in the cumulative counts suggests that user-
session based techniques might continue to improve as ad-
ditional sessions (and potentially additional user behaviors)
are collected; however, this trend might also be tempered
by the costs of collecting and analyzing additional data, and
as the number of detectable faults remaining in the system
is reduced. The costs of experimentation constrained our
ability to collect further sessions to investigage this; further

studies on commercial sites with thousands of sessions per
day would provide the opportunity to further analyze such
trends.

Using larger numbers of sessions, however, introduces
at least one additional challenge in addition to the cost of
collecting and managing sessions: the oracle problem [20].
That is, what is the expected output in response to a request,
and how do we perform an effective comparison of results
to expected results? In a regression testing context, where
a web application evolves and produces new versions, this
problem can be partially addressed by the procedure we em-
ployed in our experiment, where the outputs of one version
constitute a baseline against which posterior versions’ out-
puts are compared. This is similar to the solutions provided
by capture-replay tools, but at a larger scale.

Still, this scenario presumes that the correctness of re-
sults of executing test cases on a baseline can be deter-
mined, that initial states can be collected and reused in test
execution, and that the execution of thousands of generated
test cases can be made affordable. One approach that might
help with error detection involves techniques for automat-
ically detecting anomalous behaviors among large sets of
executions [5]; these techniques might allow large numbers
of generated test cases to be retained usefully.

A second approach involves using existing techniques to
reduce test suite size while maintaining coverage by remov-
ing redundant test cases from the suite. We briefly explored
this second approach, adapting the test suite reduction tech-
nique of Harrold et al. [7] and applying it to the test cases
generated with US-1. When applied at a functional level,
test suite reduction could have reduced test suite size by
98%, with a loss of only three faults (20 were detected).
Test suite reduction on block level information reduced the
test suite size by 93%, detecting one fewer fault than the
complete US-1 original test suite. These results suggest
that combining reduction techniques with user-session tech-
niques could be helpful for handling the large number of re-
quests found in commercial e-commerce sites. As defined,
however, test suite reduction techniques function only on
complete data sets. New techniques will have to be devel-
oped to incrementally handle the collection and processing
of data as it arrives.

4.6. Threats to validity

This study, like any other, has some limitations. In this
section we identify the primary limitations that could have
influenced the results and we explain how we tried to con-
trol unwanted sources of variation. Some of these limita-
tions are unavoidable consequences of the decision to use
controlled experimentation; however, the advantage of con-
trol is more certain knowledge of causality.

First, we needed to set up infrastructure to reproduce a
web application that resembled as closely as possible those

F
au

lts

0

5

10

15

20

25

0 20 40 60 80

B
lo

ck
s

0

50

100

150

200

250

300

0 20 40 60 80

F
un

ct
io

ns

0
10
20
30
40
50
60

0 20 40 60 80

Session Number

Figure 4. Relationship between the number of user sessions collected and the effectiveness of US-1.

found in the real world. To control for potential threats
caused by the lack of representativeness of the web applica-
tion, we carefully adapted an existing e-commerce applica-
tion, populating its database, and configuring the site ship-
ping and personalization attributes. In spite of this effort,
the resulting web site included just a subset of the technolo-
gies used in the field, so our results can be claimed to gen-
eralize only to web applications using similar technologies.
Additional web applications must be studied to overcome
these threats to external validity.

Second, we needed to seed faults in the application so
that we could evaluate the testing techniques. Although nat-
urally occurring faults are preferred, obtaining a web appli-
cation with a large number of known faults was not feasible.
As a consequence, we opted for a fault seeding process sim-
ilar to those commonly used in previous research to measure
testing techniques’ fault-detection effectiveness. The risk of
seeding faults that are not representative of the faults found
in web applications is still a threat to external validity. For
example, we did not simulate the existence of faults on the
client side (e.g., javascript faults).

Third, our user-session based techniques employ user in-
teractions, which implies that we required collection of data
from users interacting with the e-commerce site we had set
up. User navigation and buying patterns were not our focus,
but we wished to reproduce the activities users might per-
form in this type of site. The instructions for participants in-
cluded a task and an incentive to make the experience more
realistic for a set of potential customers, but are still just
an approximation of reality and constitute a threat to ex-
ternal validity because of representativeness, and a threat
to internal validity because they could have constituted a
nuisance variable that affected the results. Similarly, the in-
put selection that drive the WB techniques is influenced by
the testers’s ability and intuition for input selection. We di-
minished the impact of this threat by providing a common
strategy for all testers to select their input values.

5. Conclusion

We have presented and quantified a new approach for
testing web applications. This new approach differs from

existing approaches in that it leverages captured user be-
havior to generate test cases, leading to a reduction in the
amount of required tester intervention. Further, the re-
sults of a controlled experiment indicate that this approach’s
effectiveness is comparable and likely complementary to
more formal white box testing approaches.

These results suggest several directions for future work.
First, the combination of traditional testing techniques and
user-session data would seem to possess a potential that we
have not been able to fully exploit. New ways must be
found to successfully integrate these approaches. In addi-
tion, more complex techniques that consider other factors
affecting the approach must be explored; such factors in-
clude web application states and concurrent user requests.

Second, the analysis of user-session techniques suggests
that using a large number of captured used sessions involves
tradeoffs. Additional sessions may provide additional fault
detection power, but a larger number of sessions also im-
plies more test preparation and execution time. Techniques
for filtering sessions will need to be investigated.

Third, the applicability of the user-session test genera-
tion approach will certainly be affected by the efficiency of
the data collection process. Further studies are needed to
determine under what types of loads this approach is cost-
effective. Furthermore, given the observed asymptotic im-
provement in fault detection, studies will need to consider
whether this approach should be applied to all or just a sub-
set of the user-sessions.

Finally, we believe that there are many applications for
user-session data that have not been fully explored in the
domain of web applications. For example, user-session
data could be used to assess the appropriateness of an ex-
isting test suite in the face of shifting operational profiles.
Through such approaches, we hope to be able to harness the
power of user profile data to improve the reliability of this
important class of software applications.

Acknowledgments

This work was supported in part by the NSF Informa-
tion Technology Research program under AwardsCCR-
0080898 andCCR-0080900 to University of Nebraska, Lin-
coln and Oregon State University. The e-commerce ap-
plication was made available by gotocode.com. Madeline
Hardojo assisted in the fault seeding process. We especially
thank the users who participated in the study, and we thank
the reviewers for their helpful comments.

References

[1] Apache-Organization. Apache http server version 2.0 docu-
mentation. http://httpd.apache.org/docs-2.0/.

[2] B. Beizer. Softw. Testing Techniques. Van Nostrand Rein-
hold, New York, NY, 1990.

[3] R. Binder. Testing Object-Oriented Systems. Addison Wes-
ley, Reading, MA, 2000.

[4] J. Conallen.Building Web Applications with UML. Addison-
Wesley Publishing Company, Reading, MA, 2000.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. InProceedings
of the International Conference on Software Engineering,
pages 339 – 348, May 2001.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies.IEEE Transac-
tions on Software Engineering, 28(2):159–182, Feb. 2002.

[7] M. Harrold, R. Gupta, and M. Soffa. A methodology for
controlling the size of a test suite.ACM Transactions on
Software Engineering and Methodology, 2(3):270–285, July
1993.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. InProceedings of the Interna-
tional Conference on Software Engineering, pages 191–200,
May 1994.

[9] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experi-
ences in Engineering Flexible Web Services.IEEE Multi-
Media, 8(1):58–65, Jan. 2001.

[10] T. Lee. World wide web consortium. http://www.w3.org/.
[11] C. Liu, D. Kung, P. Hsia, and C. Hsu. Structural testing

of web applications. InProceedings of the 11th IEEE In-
ternational Symposium on Software Reliability Engineering,
pages 84–96, Oct. 2000.

[12] S. Manley and M. Seltzer. Web facts and fantasy. InPro-
ceedings of the 1997 Usenix Symposium on Internet Tech-
nologies and Systems, Monterey, CA, 1997.

[13] B. Michael, F. Juliana, and G. Patrice. Veri-
web:automatically testing dynamic web sites. In
Proceedings of 11th International WWW Conference,
Honulolu, May 2002.

[14] A. Nikora and J. Munson. Software evolution and the fault
process. InProceedings of the Twenty Third Annual Soft-
ware Engineering Workshop, NASA/Goddard Space Flight
Center, 1998.

[15] Parasoft. WebKing. http://www.parasoft.com/jsp/products.
[16] Rational-Corporation. Rational testing robot.

http://www.rational.com/products/robot/.
[17] F. Ricca and P. Tonella. Analysis and testing of web appli-

cations. InProceedings of the International Conference on
Software Engineering, pages 25–34, May 2001.

[18] I. Software Research. eValid. http://www.soft.com/eValid/.
[19] J. Tzay, J. Huang, F. Wang, and W. Chu. Constructing an

Object-Oriented Architecture for Web Application Testing.
Journal of Information Science and Engineering, 18(1):59–
84, Jan. 2002.

[20] E. J. Weyuker. On testing non-testable programs.The Com-
puting Journal, 15(4):465–470, 1982.

[21] E. J. Weyuker and B. Jeng. Analyzing partition testing
strategies. IEEE Transactions on Software Engineering,
17(7):703–711, July 1991.

[22] W. Wong, J. Horgan, S. London, and A. Mathur. Effect of
test set minimization on fault detection effectiveness. InPro-
ceedings of the 17th International Conference on Software
Engineering, pages 41–50, Apr. 1995.

